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Abstract. Model checking is an automated technique that can be used to deter-
mine whether a system satisfies certain required properties. The typical approach
to verifying properties of software components is to check them for all possible
environments. In reality, however, a component is only required to satisfy proper-
ties in specific environments. Unless these environments are formally characterized
and used during verification (assume-guarantee paradigm), the results returned by
verification can be overly pessimistic. This work introduces an approach that brings
a new dimension to model checking of software components. When checking a com-
ponent against a property, our modified model checking algorithms return one of
the following three results: the component satisfies a property for any environment;
the component violates the property for any environment; or finally, our algorithms
generate an assumption that characterizes exactly those environments in which the
component satisfies its required property. Our approach has been implemented in
the LTSA tool and has been applied to the analysis of two NASA applications.

Keywords: assume-guarantee reasoning, model checking, component verification

1. Introduction

Our work is motivated by an ongoing project at NASA Ames Re-
search Center on the verification of autonomous software. Autonomous
software involves complex concurrent behaviors for reacting to exter-
nal stimuli without human intervention. Extensive verification is a
pre-requisite for the deployment of missions that involve autonomy.
Model checking is an automated verification technique that can be
used to determine whether a concurrent system satisfies certain prop-
erties by exhaustively exploring all its possible executions. Software
model checking is typically applied to components of a larger system for

* This paper is an expanded version of (Giannakopoulou et al., 2002).
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several reasons. For example: a software component may be embedded
as is the case for autonomous software; one would typically ignore the
details of the operating system in which a component operates; a system
may be partially specified; finally, given the fact that the state explosion
problem (Clarke et al., 1999) is particularly acute in software systems,
one realistically needs to “divide and conquer”, that is, to break up the
verification task into smaller tasks.

In order to model check a component in isolation one needs to incor-
porate a model of the environment interacting with the component. By
default, this is the “most general environment”, an environment that
can invoke, in any order, any action of the interface between the two,
or that may refuse any service that the component requires. We believe
that the above approach to component checking is overly pessimistic;
the underlying assumption is that the environment is free to behave as
it pleases, and that the component will satisfy the required property
for any environment. A similar observation is made by de Alfaro and
Henzinger in the context of interface compatibility checking (de Alfaro
and Henzinger, 2001a; de Alfaro and Henzinger, 2001b).

In the world of model checking, this problem has given rise to the
assume-guarantee style of reasoning (Jones, 1983; Pnueli, 1984), where
the model of the environment is restricted by assumptions provided
by the developer. Assume-guarantee reasoning first checks whether a
component guarantees a property, when it is part of a system that
satisfies an assumption. Intuitively, the assumption characterizes all
contexts in which the component is expected to operate correctly. To
complete the proof, it must also be shown that the remaining com-
ponents in the system, i.e., the environment, satisfy the assumption.
This style of reasoning is typically performed in an interactive fashion.
Developers first check a component with the most general environment.
If a counterexample is returned that is unrealistic for the system under
analysis, they make several attempts at defining an assumption that
is strong enough to eliminate false violations, but that also reflects
appropriately the remaining system.

In this paper we propose and describe a novel framework for model
checking of components that provides more useful user feedback than
the usual counter-example generation for property violations. When
model checking a component against a property, our algorithms return
one of the following three results: (i) the component satisfies the prop-
erty for any environment; (ii) the component violates the property for
any environment; or finally, (iii) an automatically generated assumption
that characterizes exactly those environments in which the component
satisfies the property.
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Let us illustrate this with a small example. A multi-threaded com-
ponent uses a mutex to coordinate accesses to a shared variable, which
may also be accessed by the environment. The requirement is that race
violations should not occur in the system. If some thread within the
component performs unprotected accesses to the variable, the require-
ment may be violated irrespective of the environment. Our approach
reports this fact, together with a counterexample illustrating it. Now
assume that all accesses to the variable within the component are
protected by the mutex. Model checking under the most general en-
vironment would return a violation. Our algorithms would return an
assumption, reflecting the fact that all accesses to the shared variable
by the environment must similarly be protected by the lock.

In fact, our approach generates the weakest environment assumption
that enables the property to hold. Therefore, in selecting an appropriate
environment for a component, one can safely reject any environment
that does not satisfy the assumption generated. Assumption generation
may also be seen as a way of providing extra automated support for
assume-guarantee reasoning. Finally, for systems like the ones we study,
the environment is often unpredictable. Some assumptions are typically
made about it, but loss of mission must be avoided even if the envi-
ronment falls outside these assumptions. For such cases, assumptions
can be used as runtime monitors of the actual environment (Havelund
and Rosu, 2001). Monitors can generate appropriate warnings when the
environment falls outside expected behavior and trigger special system
behavior, if necessary.

We have implemented our approach in the Labeled Transition Sys-
tems Analyzer (LTSA) tool (Magee et al., 1999; Magee and Kramer,
1999), which provides good support for incremental system design and
verification. It implements such features as component abstraction and
minimization that make the integration of our approach straightfor-
ward.

The problem of assumption generation can be associated with such
problems as submodule construction, controller synthesis and model
matching. To our knowledge, such work has not been directly applied
to model checking before; the relation of our approach with these do-
mains is further discussed in Section 6. The remainder of the paper
is organized as follows. Section 2 briefly discusses the LTSA tool and
the underlying theory that is used by our approach. It is followed by
the presentation of our approach in Section 3. Section 4 describes our
experience with analyzing the Executive modules of two autonomous
systems developed at NASA Ames. We discuss the applicability of our
approach in practice and extensions that we are considering in Section
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5. Finally, Section 6 presents related work, and Section 7 concludes the
paper.

2. Background

In this section, we describe the LTSA framework in which our approach
has been introduced. We provide formal definitions for those aspects of
the tool that we have used and/or modified.

2.1. THE LTSA TooL

The LTSA (Magee et al., 1999; Magee and Kramer, 1999) is an auto-
mated tool that supports Compositional Reachability Analysis (CRA)
of a software system based on its architecture. In general, the software
architecture of a concurrent system has a hierarchical structure (Magee
et al., 1994). CRA incrementally computes and abstracts the behavior
of composite components based on the behavior of their immediate
children in the hierarchy. Abstraction consists of hiding the actions that
do not belong to the interface of a component, and minimizing with
respect to observational equivalence (Giannakopoulou et al., 1999).

The input language “FSP” of the tool is a process-algebra style
notation with Labeled Transition Systems (LTS) semantics. A prop-
erty is also expressed as an LTS, but with extended semantics, and
is treated as an ordinary component during composition. Properties
are combined with the components to which they refer. They do not
interfere with system behavior, unless they are violated. In the presence
of violations, the properties introduced may reduce the state space of
the (sub)systems analyzed.

As in our approach, the LTSA framework treats components as open
systems that may only satisfy some requirements in specific contexts.
By composing components with their properties, it postpones analysis
until the system is closed, meaning that all contextual behavior that is
applicable has been provided. We extend this framework by performing
useful analysis at the component level.

The LTSA tool also features graphical display of LTSs, interactive
simulation and graphical animation of behavior models (Magee et al.,
2000), all helpful aids in both design and verification of system models.

2.2. PROGRAM MODEL

We use labeled transition systems (LTSs) to model the behavior of
communicating components in a concurrent system. Let Act be the
universal set of observable actions, and Act, = Act U {7}, where 7
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M utex:
E.acquire W.acquire

Writer:
W.acquire W.enterCS

W release W.exitCSs

Figure 1. LTSs for a Mutex and a Writer

denotes a local action unobservable to a component’s environment. A
labeled transition system T is a quadruple (S, aT, R, sg), where S is a
set of states, T C Act is a set of actions called the alphabet of T,
RC S xaTU{r} x S is a transition relation and sy € S is the initial
state. We use 7 to denote a special error state, which models the fact
that a safety violation has occurred in the associated system, and then
use II to denote the LTS ({r}, Act, (), ).

For example, Figure 1 illustrates LTSs for a Writer component and
a Mutez. In all illustrations of LTSs in this paper, state 0 is the initial
state. The Writer acquires the mutex (action W.acquire), enters and
subsequently exits a critical section (W.enterCS, W.exitCS) used to
model the fact that the Writer updates some shared variable, and then
releases the mutex W.release. The Mutexr component can be acquired
and released by the Writer (W.acquire, W.release) or its environment
(E.acquire, E.release), but only a single component can hold it at any
one time.

We call an LTS well formed if the error state 7 has no outgoing tran-
sitions: by construction, we only consider well formed LTSs in this work.
An LTS T = (S, aT, R, so) is non-deterministic if (s, a, s'), (s,a,s") €
R such that s’ # s” (otherwise T is deterministic).

A trace o of an LTS T is a sequence of observable actions that
T can perform starting at its initial state. For example, < W.acquire>
and < W.acquire, W.enterCS, W.exitCS> are both traces of the Writer
component of Figure 1. The set of traces of T" is denoted as Tr(T'). For
A C Act, we use o | A to denote the trace obtained by removing from
o all occurrences of actions a ¢ A. We denote as errTr(T) the set of
traces that may lead to state w, which we call error traces of T.
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2.2.1. Operators

In the following, we provide semantics for the operators defined on LTSs
that are used in our work. Although we provide transitional semantics
in a typical process algebra style, our aim here is not to define an
algebra.

Let T = (S,aT,R,so) and T" = (S',aT", R, s). We say that T
transits into T’ with action a, denoted T — T, iff (¢, a, s,) € R and:
either T = aT" and R = R’ for s{, # 7, or, in the special case where
sog=m, T =1L

The interface operator T is used to make unobservable those actions
in the LTS of a component that are not part of its interface. Formally,
given an LTS T and a set of observable actions A C Act, T T A is
defined as follows. For T =11, T T A=1I. For T # I, T T A is an
LTS with the same set of states and initial state as T'. The alphabet of
T 1T Ais aTNA, and its transition relation is described by the following
rules:

T-5T ac A T-5T,a¢ A
TTA-ST 1A TTA-ST 1A

Parallel composition “||” is a commutative and associative opera-

tor that combines the behavior of two components by synchronization
of the actions common to their alphabets and interleaving of the re-
maining actions. For example, in computing the parallel composition
of components Writer and Mutexr of Figure 1, actions W.acquire and
W.release will each be synchronized.

Formally, let 1 = (S, Ty, R, s{) and Tp = (S?, aTy, R?, s3) be two
LTSs. If either T3 = II or T, = II, then T1||T> = II. Otherwise, 11 ||T»
is an LTS T = (S, aT, R, s9), where S = S x S2, 59 = (s§,53), aT =
aTiUaTy, and R is defined as follows, where a is an observable action or
7 (the symmetric rules are implied since the operator is commutative):

T T], agaly T, Ty T, a#T
|| Ty - TY|| Ty Ty||T> - TY||T4

2.2.2. Properties
A safety property is specified as a deterministic LTS that contains no
7 transitions, and no 7 state. The set of traces Tr(P) of property P
defines the set of acceptable behaviors over aP. An LTS T satisfies P,
denoted as T = P iff Tr(T 1 aP) C Tr(P).

The LTSA automatically derives from a property P an error LTS
denoted P.,., which traps possible violations with the 7 state. For-
mally, the error LTS of a property P = (S,aP, R, so) is Pepr = (S'U
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E.enterCS W.enterCS

. E.exitCS | W.exitCS |
W.enterCS | | | W.enterCS
W.exitCS ' W.exitCS | E.enterCS
E.enterCS . . E.exitCS ./ E.exitCS

e ] oo
. @‘—

Figure 2. Mutual exclusion property

{7}, aPerr, R, 50), where a Py, = aP and R’ = RU{(s,a,7)|a € aP
and -3¢’ € S : (s,a,s’) € R}. Note that the error automaton is
complete, i.e., each state (other than the error state) has outgoing
transitions for every action in the alphabet.

For example, Figure 2 illustrates a mutual exclusion property for
a system consisting of the LTSs of Figure 1. The property comprises
states 0,1,2 and the transitions denoted by solid arrows. It expresses
the fact that the component and its environment should never be in
their critical sections at the same time. In other words, the intervals
defined by their mutual enterCS and ezitCS actions should never over-
lap. The dashed arrows illustrate the transitions to the error state that
are added to the property to obtain its error LTS.

Let T be an LTS that has no error traces. To detect violations of
property P by component T, the LTSA computes T'||Pe,. It has been
proven in (Cheung and Kramer, 1999) that 7" violates P iff the 7 state is
reachable in T'||P.,,, or equivalently, iff errTr(T||Pey) # 0. The error
state has special treatment during minimization, so that a violation
does not disappear as a result of abstraction. In fact, an error state
within a component can only disappear with composition, i.e., if a
component with which it interacts blocks the erroneous behavior.

3. Assumption Generation

In this section we describe in detail our extensions to traditional model
checking, and their implementation in LTSA. We also provide a formal
proof of correctness.

3.1. GENERAL METHOD

The traditional approach to verifying a property of an open system (i.e.,
a software component that interacts with an environment, represented
by other components) is to check it for all the possible environments.
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LTSA + Assumption Generation
Property

» (1) Composition and Minimization

Component Property True

(al environments)

Y

(2) Backward Error Propagation

Property False
(al environments)

Y

Y

Property True
(some environments)
+ Assumption

Y

(3) Property Extraction

Figure 3. Model Checking with Assumption Generation

The result of verification is either true, if the property holds for all
the possible environments, or false, if there exists some environment
that can lead the component to falsify the property. We believe that
this approach is overly pessimistic and only appropriate for the analysis
of closed systems, where no further interaction with the environment
is expected. When analyzing open systems, an optimistic view, which
assumes a helpful environment, is more appropriate. Usually, software
components are required to satisfy properties in specific environments,
so it is natural to accept a component if there are some environments
in which the component does not violate the property.

In our approach, the result of component verification is also true,
if the property holds for all environments. However, the result is false
only if the property is falsified in all environments. If there exist some
environments in which the component satisfies the property, the result
of verification is not false, as in the traditional approach, but rather
true in environments that satisfy a specific assumption. This assump-
tion, i.e. a property LTS, is automatically generated and characterizes
exactly those environments. Intuitively, this environment assumption
encodes all possible “winning strategies” of the environment in a game
between the system, which attempts to get to the error state, and the
environment, which attempts to prevent this. Figure 3 illustrates our
approach together with the steps we follow to build the assumptions
(that are described below).

Step 1: Composition and Minimization

Given an open system and a property LTS that may relate the behavior
of the system with the behavior of the environment, our first step
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E.acquire

E.enterCS E.acquire E.exitCS

E.enterCS

E.exitCS @

Figure 4. Composite LTS

is to compute all the violating traces of the system for unrestricted
environments, and turn into 7 all actions in these traces over which the
environment has no control, i.e., the internal actions of the system. We
perform this step by building the composition of the system with the
error LTS of the property, and subsequently hiding the internal actions
of the system. The resulting LTS can be minimized with respect to any
equivalence that preserves (error) traces. In our implementation, we use
minimization with respect to observational equivalence as defined in the
presence of error states by Cheung and Kramer in (Cheung and Kramer,
1999), and as supported by the LTSA tool. For example, Figure 4
depicts the result of composing the components depicted in Figure 1
with the mutual exclusion property of Figure 2, after minimization.
The internal actions of the system, i.e. the “W” labeled transitions,
were abstracted to 7.

If the error state is not reachable in this composition, the property
is true in any environment, and this is reported to the user. Otherwise,
we determine whether there exist environments that can help the sys-
tem avoid the error in all circumstances; this is achieved through the
following steps.

Step 2: Backward Error Propagation

This step first performs backward propagation of the error state over
T transitions, thus pruning the states where the environment cannot
prevent the error state from being entered via one or more 7 steps.
Since we are interested only in the error traces, we also eliminate the
states that are not backward reachable from the error state. If, as a
result of this transformation, the initial state becomes an error state,
it means that no environment can prevent the system from possibly
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E.acquire E.enterCS

E.enterCS
E.exitCS

Figure 5. The Result after Backward Error Propagation

__ E.acquire, E.release
N E.enterCS, E.exitCS

\

\
\

E.acquire | E.acquire
1

\
|

E.enterCS !

|

! E.acquire

E.release E.exitCS

Figure 6. Generated Assumption (after deletion of 7 state)

reaching the error state, so the property is false (for all environments)
and this is reported to the user.

Consider again the composite system in Figure 4. The thicker line
marks the only 7 transition that remains in the system after minimiza-
tion. As a result of backward propagation, we identify state 1 with the
error state; the result is shown in Figure 5. The intuition here is that,
if the component is in a state from which it can violate the property
by some number of internal moves, then no environment can prevent
the violation from occurring.

Step 3: Property Extraction

This step builds the property LTS that is our assumption. It performs
this in two stages; first it builds the error LTS for the assumption, from
which it extracts the corresponding property LTS. Note that the LTS
resulting from Step 2 might not be an error LTS, although it contains
an error state. Recall from the background section that the error LTS
is deterministic and complete.

In order to get an error LTS we make the LTS obtained from step
2 deterministic by applying to it 7 elimination and the subset con-
struction (Aho et al., 2000), but by taking special care of the 7 state
as follows. During subset construction, the states of the deterministic
LTS that is being generated are sets of states in the original non-
deterministic LTS. In our context, if any one of the states in the set is m,
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the entire set becomes 7. Intuitively, a trace that non-deterministically
may or may not lead to an error has to be considered as an error
trace. Such non-determinism reflects the fact that, by performing a
particular sequence of actions, the environment cannot guarantee that
the component will avoid error states.

For example, consider again the composite system in Figure 4. There
are two outgoing transitions from the initial state 0 that are labeled by
the same environment action E.enterCS: one leads to the error state,
while the other one leads to state 1. This means that if the environment
performs action E.enterCS, it can not prevent the system from getting
to the error, so we would like to identify state 1 with 7. In our example
in Figure 4, this was achieved during Step 2, but this may not be the
case in general.

What remains to be performed at this stage is to make the resulting
LTS complete. Completion is performed by adding a new “sink” state to
the LTS, and adding a transition to this state for each missing transition
in the “incomplete” LTS. The missing transitions in the incomplete LTS
represent behavior of the environment that is never exercised by the
open system under analysis. As a result, no assumptions need to be
made about these behaviors. The sink state reflects exactly this fact,
since it poses no implementation restrictions to the environment.

Once we have the error LTS, we obtain the assumption by deleting
the error state and the transitions that lead to it. Figure 6 depicts the
assumption generated for our example. Since the result from Step 2
is already deterministic, we get the assumption by completing it with
the sink state, denoted by 0, and deleting the 7w state. The assumption
expresses the fact that the environment should only access its critical
section protected by the mutex. Moreover, as imposed by the mutex,
E.acquire and F.release actions of the environment can only alter-
nate, and therefore any different behavior is inconsequential. Notice
for example that from state 0, action E.release leads to state 6.

3.2. IMPLEMENTATION IN THE LTSA

As mentioned, the LTSA provides a framework that facilitates the in-
troduction of the extensions we have presented. For example, we took
advantage of its support for composition, abstraction, minimization and
determinization. The extra features that our approach required are:

— Special treatment of the error state, m, during determinization.
The special semantics of this state were not previously taken into
account.

assumptions-journal.tex; 13/10/2003; 12:17; p.11



12 Dimitra Giannakopoulou, Corina S. Pasareanu, and Howard Barringer

— Backwards reachability and error propagation as required by step
2. We believe that error propagation should be performed during
CRA for increased efficiency, irrespective of our approach.

— Completion with the sink state, #, and property extraction from
the error LTS.

3.3. CORRECTNESS OF APPROACH

Let T denote an open system with alphabet o1 and let E denote
another system representing an arbitrary environment for 7T, whose
alphabet is aFE. Let P denote a property LTS with alphabet aP C
oT U aFE (a property may refer to actions in both 7" and E).

Let C = oT' N aFE be the set of common actions between T and FE,
and let 7 = oT — C denote the internal actions of the system.

Our approach generates the property LTS A with alphabet aA =
C U (aP —I), representing the weakest assumption characterizing all
the environments that, composed with the system, satisfy the property,
ie., E = Aif and only if E||T = P.

The following proposition says that the error traces of Ae.. are
obtained from the traces in T'||P.,, that may lead to an error state,
from which we remove the actions not present in «A.

PROPOSITION 3.1. errTr(Aer) = {0 € aA*|30’ € errTr(T||Perr) A
o=0c"| aA}.

The following theorem makes precise the claim that A is the weakest
assumption about the environment F of T' that ensures property P.

THEOREM 3.2. VE, E = A if and only if E||T = P.

Proof.

— VE such that E = A, we have to show that E||T" = P. The proof
is by contradiction.

Assume E||T £ P. Then, there is a trace o in E||T||P..» that
leads to the error state (i.e., o € errTr(E||T||Pe)). We use o to
build a trace o’ € Tr(FE) such that ¢’ | «A € errTr(Ae), thus
contradicting E = A.

Since o is an error trace in E||T|| Py, it follows that o [ aF €
Tr(E) and o | (aTUaP) € errTr(T||Perr). From Proposition 3.1,
it follows that (¢ [ (T U aP)) [ aA € errTr(Aerr).
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Since €A C aFE and oA C oT' U aP, we also have that (o [ aF) |
aA = (o] (aTUaP)) | aA. Let 0/ = 0 | a«E. We then have that
o laAd= (o] (aTUaP)) | aA € errTr(Ae), and thus we have
a contradiction.

— VE such that F||T | P, we have to show that £ = A. Again,
we prove this by contradiction.

Assume E [~ A. Then, there is a trace o € Tr(FE) such that
o | aA € errTr(Ae). From Proposition 3.1, it follows that there
is a trace o’ € errTr(T||Pey) such that o | aA = o’ | aA. We
use o and ¢’ to build a trace ¢’ in E||T||Perr such that ¢’ | aP €
errTr(Pe), thus reaching the contradiction of E||T = P.

Since o is a trace of E, ¢’ is a trace of T||Pepy, 0 | €A =0' | @A
and C C «aA it follows that o and ¢’ may differ only on non-
common actions. It follows that there exists a trace ¢” in E||T|| Perr
such that ¢’ | aE = o and ¢” | (oT U aP) = ¢'. (we build
o” by “composing” o and o’ using the same rules as for parallel
composition of systems).

Since o’ € errTr(T||Per), it follows that o' | aP € errTr(Peyy).
We also have ¢” | aP = o' | aP, since ¢ may introduce in o’
only actions that are not present in aA or aP. It follows that
o” | aP € errTr(P..), and thus we have a contradiction.

g

3.4. POTENTIAL DEADLOCK REMOVAL

The construction we have presented so far will build the weakest as-
sumption A about the environment for component 7" to achieve a given
property P. The weakest assumption characterizes all environments in
the context of which the behavior of the component will be restricted
as necessary for P to always hold. However, it is possible that in order
to ensure P, the assumption A leaves to T no alternative than to stop
interacting with the environment indefinitely. We call such situations
introduced by the assumption potential deadlocks, or deadlocks, for
simplicity.

Consider for example the component and property illustrated in
Figure 7. The given property P requires that the component either
performs a b followed by as, or just as; the component, however, expects
to perform a b after the first a. The weakest environment assumption,
as per the above construction, is depicted in Figure 8. Under this envi-
ronment assumption, the given component would deadlock if an initial
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a transition is undertaken since a b transition is not feasible. Although
such behaviour is correct according to the semantics of the property, it
may be undesirable. In this section, we present a modification to our
construction that avoids this particular type of deadlocks, if they are
undesirable.

Component: Property:
a b ab

Figure 8. The Weakest Environment Assumption

To make our presentation more precise, we first introduce a few
definitions. Given an LTS T' = (S, oT), R, so) representing the behaviour
of a component or parallel composition of components, we say that:

— a state s € S is reachable from state s’ iff either s is s’ or there
is some (s”,a,s) € T and s” is reachable from s'; a state s € S is
reachable iff s is reachable from sg.

— a state s € S is a terminal state iff s is reachable and s has no
outgoing transitions, i.e. there is no (s,a,s’) € R for any a and s'.

— T is non-terminating iff it contains no terminal states.

— T is potentially finite iff T has at least one terminal state.

For an LTS T representing a reactive process (meant to continuously
interact with its environment) we then say that:
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— T has a deadlock iff T is potentially finite.
— T is free of deadlock iff T' is non-terminating.

However, the above definition of deadlock is too strong; whilst it is
good for an LTS representing a single component, it does not charac-
terize deadlock in a sub-component of some composition. For example,
suppose the property LTS of Figure 7 is modified by adding a new
transition, labeled by an action not in the alphabet of the component
- say ¢ - from state 1 back to state 1. This results in the weakest
environment assumption of Figure 9 which has a ¢ loop on state 1.
Under the above definitions, this modified LTS does not introduce a
deadlock. However, an environment that first performed an a and then
continued with cs would result in the component getting deadlocked at
state 1 since no b would ever be forthcoming.

Figure 9. The Weakest Assumption for the Modified Property

To handle such cases, we modify the above definitions for deadlock
to be relative to a given (component) alphabet, say aC C aT'. The
principal change is:

— a state s € § is terminal wrt aC iff s is reachable and no path
from s is labelled at any point by an interface action from aC'

Now given a component 7', which is free of deadlock under the above
definitions, and a desired property, the following modification to our
construction will yield a weakest assumption that does not introduce
deadlock. Step 2 becomes an iterative process during which 1) deadlock
states are identified as errors and 2) backward error propagation is
applied, until these steps have no effect on the resulting graph. In this
context, deadlock states are states that are terminal if we ignore all their
outgoing transitions that lead directly to the error state. These tran-
sitions are ignored because they will be removed by our construction
of the weakest assumption. Note that, since determinization as applied
by step 3 of our algorithm changes the structure of an LTS, further
deadlocks may be identified. Therefore, right after determinization and
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before completion, step 3 also applies the iterative deadlock removal
process described above. Note that the deadlock removal process of
step 2 cannot be skipped, because determinization does not preserve
deadlocks.

4. Applications

In the context of our project on the verification of autonomous systems,
we applied our approach as presented in Section 3 to components of
two such applications, the executive subsystems of the K9 Mars Rover
and of the Remote Agent.

For the K9 Mars Rover our framework was used to illustrate to
the developers the way in which some required properties decompose
across components of the system. For the Remote Agent, our approach
detected the violation of a property in an assume-guarantee style. The
Remote Agent case study also demonstrates a situation where the gen-
erated assumption may cause the component to deadlock. This poten-
tial deadlock could be removed by applying the modified construction
presented in Section 3.4.

4.1. K9 MARS ROVER EXECUTIVE

Our first application is the planetary rover controller K9, and in par-
ticular its executive subsystem, developed at NASA Ames Research
Center. The executive receives flexible plans from a planner, which it
executes according to the plan language semantics. A plan is a hierar-
chical structure of actions that the Rover must perform. Traditionally,
plans are deterministic sequences of actions. However, increased Rover
autonomy requires added flexibility. The plan language therefore al-
lows for branching based on state or temporal conditions that need
to be checked, and also for flexibility with respect to the starting
time of an action. The plan language allows the association of each
action with a number of state or temporal pre-, maintenance, and post-
conditions, which must hold before, during, and on completion of the
action execution, respectively.

Description

The executive has been implemented as a multi-threaded system (see
Figure 10), made up of a main coordinating component named Ezecu-
tive, components for monitoring the state conditions ExecCondChecker,
and temporal conditions FzecTimerChecker - each further decomposed
into two threads - and finally an ActionEzecution thread that is respon-
sible for issuing the commands to the Rover. Synchronization between
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these threads is performed through mutexes and condition variables.
The developers provided some design documents to us, which described
the synchronization between these components in an ad-hoc flowchart-
style language. They looked very much like LTSs, which allowed us to
translate them in a straightforward and systematic, albeit manual, way
into FSP for the LTSA.

Model checking

We first checked the occurrence of race conditions for the case of a
variable (conditionSetChanged) of the ExecCondChecker shared with
the Ezecutive. We checked the property on the ExecCondChecker (that
consists of threads Internal and DbMonitor) together with the mutexes
it uses, since mutexes constitute the synchronization mechanism in this
system. The EzecCondChecker with mutexes and the property had 426
states but minimized to 18 states. The propagation of the error state
then produced an LTS of just 10 states, and the final assumption gener-
ated had 12 states (one being the sink state). We were surprised to see
that our approach did not generate the expected assumption, i.e. that
accesses to the shared variable by the environment must be protected
by the appropriate mutex, as in the example of Section 3. In fact,
the assumption obtained was weaker. It reflected the knowledge that,
once the environment holds the mutex, the values that the environ-
ment reads reflect changes that only the environment may have made.
For example, assume that, while holding the mutex, the environment
assigns value z to the variable. Then reading any value ' # x would
lead the environment to the sink state, because this behavior will never
actually be exercised in the context of the FxecCondChecker.
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The second property that we checked in this fashion was one that
the developers thought might be violated by the code, but could ac-
tually not produce an execution that would demonstrate this fact.
For a specific variable (saved WakeUpStruct) of the ExecCondChecker
shared with the Executive, the property stated the following: if the
Executive reads the value of the variable, then the ErecCondChecker
should not read this value until the Fzecutive clears it first. Again, we
used the FrecCondChecker together with mutexes and the property to
generate an assumption on the behavior of the Ezecutive. The result
had 524 states, minimized to 9 states, reduced to 7 states with error
propagation, and to 6 states with determinization as applied by step
3 of our construction (see Section 3). The resulting assumption had
7 states (including the sink state). It stated that the environment of
the component should read the variable after acquiring a mutex, and
should hold on to that mutex until it clears the variable. Note that,
again, there were transitions to the sink state, expressing the fact that
some behavior of the environment is never exercised. For example, the
assumption made clear that the EzecCondChecker only updates the
variable with values larger than the one it currently holds.

The assumption generated was satisfied by the design level Execu-
tive. Our result gave confidence to the developers about the correctness
of their design and implementation. They also found it very useful to
be able to understand how the property decomposes across modules of
the system.

4.2. REMOTE AGENT EXECUTIVE

NASA’s Remote Agent (RA) is an autonomous spacecraft control archi-
tecture that was one of 12 technologies tested on the DEEP-SPACE 1
spacecraft launched in October 1998. It demonstrated for the first time
in NASA’s history the complete control of a spacecraft by artificial
intelligence based software. Similarly to the K9 Rover, the architecture
of the RA includes a planner and a plan execution module (executive).

The RA executive (RAX) was developed collaboratively by NASA
Ames and the Jet Propulsion Laboratory (JPL) (Pell et al., 1997).
In a very successful application of model checking to the RAX before
flight, the Software Engineering group at NASA Ames discovered three
subtle but critical errors in the system, that had not been uncovered
through testing (Havelund et al., 2001). This section describes how our
assumption generation approach has been subsequently used to detect
one of these known errors in an assume-guarantee style. We used an
FSP model of the RAX developed for a previous experiment; the FSP
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Figure 11. The Executive of the Remote Agent

model was translated from the Promela model (Holzmann, 1991) used
in the original experiment.

RAX description

The RAX is designed to support execution of software-controlled tasks
on board the spacecraft (see Figure 11). A task may be, for example,
to run and survey the camera. A task typically requires that some
properties hold throughout its execution, where a property is a pair
representing a specific value for a specific equipment sensor. For exam-
ple, the camera-surveying task may require the camera to be turned on
throughout task execution.

Notice that tasks are similar to actions and properties are similar
to conditions in the Rover example. However, in the RAX, tasks may
run concurrently, unless they are conflicting, i.e., they require different
values for the same sensor. When tasks are started, they subscribe for
the properties upon which they depend. Among the subscribing tasks
for a particular property, a single one, named the owner, is responsible
for achieving the property. The remaining tasks go to sleep; a task is
then awoken when any one of its subscribed properties is achieved.
When all properties on which a task depends are achieved, the task
starts performing its main action, otherwise it may go back to sleep.
However, a property may be unexpectedly broken due to some fault, in
which case executing tasks that depend on the specific property must
be interrupted.

To prevent conflicting tasks from executing simultaneously, the RAX
provides a locking mechanism, implemented as a Property Lock Table.
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The table records property locks in terms of 1) the sensor that they refer
to, 2) the desired sensor value, 3) whether the desired value has been
achieved — recorded in the achieved bit, and 4) which (non-conflicting)
tasks currently hold the particular lock (see Figure 11). A database
is also used to record the actual values of the spacecraft sensors. To
ensure that properties are maintained during task execution, a Daemon
periodically checks for inconsistencies between the lock table and the
database. If some achieved value in the lock table disagrees with the
corresponding value in the database, the Daemon interrupts all tasks
currently holding the particular lock.

Model Checking

We applied our framework to check the requirement that: whenever
there exist inconsistencies in the system that affect task execution, af-
fected tasks will be interrupted. For this property, we decomposed the
system into two parts, the Daemon on the one side, and the tasks, lock
table, and database on the other. We used an instance of the system
with two tasks that both require some sensor with id 1 to have value
1.

We then generated an assumption for the Daemon to satisfy the
requirement, and used the rest of the system to discharge this assump-
tion. The Daemon together with the property consisted of 38 states
minimized to 12 states, and the assumption generated consisted of 11
states (one being the sink state). The assumption expressed the fact
that, throughout the execution of the main function of a task, the
achieved bit for its required properties must be set.

When trying to discharge the assumption on the rest of the system,
the following counterexample was obtained (2142 states explored out
of 14059), which illustrates a violation of the required property in the
system:

task.l.lock.l.acquire.1 (Task 1 acquires lock for sensor 1, value 1)
task.1.db.1.read.0 (Task 1 reads in DB value 0 for sensor 1)
task.l.lock.l.owner_is.1 (Task 1 is owner of lock for sensor 1)
task.1l.db.1l.write.1 (Task 1 achieves property)
task.2.lock.1l.acquire.1 (Task 2 acquires lock for sensor 1, value 1)
task.2.db.1.read.1 (Task 2 finds that sensor 1 has value 1)
task.2.lock.1l.owner_is.1 (Task 2 is not the owner)
task.2.start_operation.l (Task 2 starts its main operation)
db.1.external write.O (fault sets sensor 1 to value 0)
daemon.1l.read.0.1.0 (Daemon checks values for sensor 1;

in DB: 0; in lock table: 1; achieved bit:0)

assumptions-journal.tex; 13/10/2003; 12:17; p.20



Component Verification with Automatically Generated Assumptions 21

Task[1].start_operation[1]

Daemon[1].read[0][1][ O]

Task[1..2].start_operation[1], C O
Task[1..2].complete operation 8 (9
-2 pieie-op O Daemon[1].flush, Q

Daemon[1].interrupt[1..2],
Daemon[1].lock.set_empty

Figure 12. Assumption (excerpts) produced for RAX

This counterexample reflects a problem in the system caused by the
fact that a task achieves a property and sets the achieved bit in the
lock table in a non-atomic fashion. As a result, a different task may
in the meantime be scheduled, find that the value of the sensor is as
expected, and start its operation. At this point, if the Daemon detects
an inconsistency, the achieved bit will not be set, and therefore tasks
will not get interrupted. The same problem was detected in (Havelund
et al., 2001) and was fixed by the developers of the RAX by introducing
a critical section around the code that achieves a property and sets the
achieved bit.

The largest state space involved in the application of our approach
was explored when discharging the assumption, and consisted of 2142
states (out of 14059 states), at which stage a violation was detected and
a counterexample was produced. Performing verification of the RAX
directly (i.e., by composing all the RAX components with the property)
and obtaining a similar counterexample would require exploring 6240
states out of 37760. This shows the potential benefits of our approach
as compared to monolithic, non-compositional, model checking. In this
case study, the assumption produced referred to a component that was
small as compared to the rest of the system. We expect that when as-
sumptions are computed for larger components (with small interfaces)
the benefits of our approach will be more pronounced.

4.3. COMPONENT DEADLOCKS

As mentioned earlier, the RAX case study exhibited that, although
the assumptions that we generate always prevent a component from
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reaching error states, they might also prevent the component from
participating in the system behavior. In Section 3.4, we discussed mod-
ifications to our construction algorithm to remove such component
deadlocks. Figure 12 depicts a portion of the assumption generated
for the Daemon in the RAX case study. In this assumption, state
8 is reached from the initial state when Task I starts its main op-
eration and the Daemon finds that the values of the sensor in the
database and the lock table disagree while the achieved bit is 0 (i.e.,
daemon.1.read[0] [1] [0]). Although state 8 appears to allow the Dae-
mon to keep interacting with its environment, one can observe that
all such interactions lead to the sink state. As discussed in Section 3,
transitions to the sink state reflect legal environment behavior that is
never exercised in the context of the component under analysis. Note
also that the self-loop transitions on state 8 are labeled with actions
that were introduced by the property, and that do not belong to the
Daemon interface. Therefore, state 8 reflects a component deadlock
situation where the Daemon will be inactive in the system. Precisely
such a deadlock would be removed by our modified procedure.

5. Discussion

The complexity bottleneck of our approach is the determinization step,
which, in the worst case, is exponential in the number of the states of
the given LTS. There are several reasons that lead us to believe that this
may not be the case often in practice. In our experiments such as the
Rover study reported in Section 4, non-determinism almost disappears
by propagation of the error state. Moreover, in the subset construction
of step 3 of our construction, composite states including the error state
also become error states and all outgoing transitions (and subsequent
behaviors) are pruned. As we only study modules of a larger system,
we expect that the state space of these modules will be relatively small.
This will be the case in particular when they interact through limited
interfaces with their environment, which will allow the minimization
step to considerably reduce their behavior. Note also that, if we extend
our results to other frameworks, the assumption may not be required to
be deterministic. Admittedly, however, deterministic assumptions tend
to be clearer to understand.

From our extensive experience with compositional reachability anal-
ysis (CRA) techniques, we are only too aware of the potential inter-
mediate state explosion associated with them (Graf et al., 1996). This
problem describes the fact that, in lack of a context, a component
may exhibit an excessively large state-space. However, this does not
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occur in the general case for well-designed software architectures. More-
over, several approaches have been proposed in the literature (Graf et
al., 1996; Cheung and Kramer, 1996; Krimm and Mounier, 1997) for
addressing the problem.

The assumptions produced by our approach are weakest, that is, they
restrict the environment no more and no less than is necessary for a
component to satisfy a given property. The possibility to generate these
assumptions automatically has direct application to assume-guarantee
proofs. More specifically, it removes the burden of specifying assump-
tions manually thus automating this type of reasoning. However, our
algorithm does not compute partial results, meaning no assumption
is obtained if the computation runs out of memory, which may hap-
pen if the state-space of the component is too large. We address this
problem in (Cobleigh et al., 2003), where we present a novel frame-
work for performing assume-guarantee reasoning in an incremental and
fully automatic fashion. To check a component against a property,
assumptions are generated that the environment needs to satisfy for
the property to hold. These assumptions are then discharged on the
rest of the system. Assumptions are computed by a learning algorithm.
They are initially approximate, but become gradually more precise by
means of counterexamples obtained by model checking the component
and its environment, alternately. This iterative process may at any
stage conclude that the property is either true or false in the system.
Moreover, even if it runs out of memory before reaching conclusive
results, intermediate assumptions may be used to give some indication
to the developer of the requirements that the component places on its
environment.

Our approach extends the LTSA tool in several useful ways. First
of all, it achieves further reduction of component behavior by applying
propagation of the error states, a computationally inexpensive but effi-
cient step. Moreover, our approach generates the weakest environment
assumptions. As such, these assumptions may be used for runtime mon-
itoring, or for component retrieval, capabilities that were not formerly
provided by the tool.

As far as component retrieval is concerned, we would like to stress
the following observation from our experiments (Section 4). The sink
state that our assumptions contain, reflects the fact that some services
that a component provides will never be used in the context of a system.
Our assumptions allow free implementations for these services, and
simply ensure that the used services comply with the requirements.

The ability to generate assumptions also opens up a number of other
interesting research directions: we mention a few to give some flavor.
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Our work has been performed with a limited but important set of
properties (safety) expressed within a specific framework that facil-
itates the development of our algorithms. However, we believe our
approach has application in other frameworks. In particular, we
are investigating the extension of our approach for the case of fair-
ness and/or liveness properties, which requires a more expressive
formalism.

When the behavior of the environment, or part thereof, is pro-
vided, we wish to find effective ways of discharging assumptions
on the environment. One way would be to use the assumption as a
property, and model check in the same fashion components in the
environment. This process can be seen as a way of decomposing,
automatically, a property across components of a system. Indeed,
an assumption reflects those aspects of the property that have not
been satisfied by the component and that remain to be satisfied by
its environment. Property decomposition is an extremely difficult
problem, and our approach may be seen as a helpful step in its
facilitation. Of course, such decomposition will not be effective
in all cases. It is easy to imagine that there will be cases where
assumptions may gradually grow in size during this process, a
problem referred to in the literature as “property explosion”.

Our approach to assumption generation can straightforwardly be
used for submodule construction, where the submodule is placed
as an interacting component in parallel with the given one. Gen-
eralization to other forms of composition is a natural step, such as
sequential composition, for example.

Assumptions may be further analyzed. For example, if the gener-
ated assumption expects the environment to hold on to a specific
lock for ever, this may indicate something inherently wrong with
the behavior of the component under analysis.

6. Related Work

For over three decades now, there has been research effort focused on
finding tractable approaches to the formal specification, design and de-
velopment of complex systems. Significant early progress occurred with
techniques and tools for sequential, non-interacting or transformational
systems. However, the quest for obtaining effective methods and tools
for the formal support of compositional and/or modular development
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and reasoning for reactive systems still remains, in our view, a major
challenge. As there is insufficient space to do justice to the work that
has been undertaken, we refer the interested reader to the proceedings
of (de Roever et al., 1997) - its introductory chapter in particular (de
Roever, 1997) - and the recent book (de Roever et al., 2001).

In more recent years with the development and take-up of OO-design
technology, formal techniques for support of component-based design
is also gaining prominence, see for example (de Alfaro and Henzinger,
2001a; de Alfaro and Henzinger, 2001b), for which modular-based rea-
soning is key. The work of Inverardi and colleagues, (Inverardi et al.,
2000), has also been aimed at providing support for the modular check-
ing of certain properties, such as deadlock freedom, but is somewhat
limited in the checks performed for compatibility between components.

In order to make progress in any of these areas, some form of as-
sumption (either implicit or explicit) about the interaction with, or
interference from, the environment has to be made. Even though we
have sound and complete reasoning systems for such rely-guarantee (or
assumption-commitment) style of reasoning, see for example (Jones,
1983; Stolen, 1991) and most recently (Xu et al., 1997), it is always a
mental challenge to obtain the most appropriate assumption (if there
is such). It is even more of a challenge to find automated techniques to
support this reasoning style - the thread modular reasoning underly-
ing the Calvin tool (Flanagan et al., 2002) and the assume-guarantee
software verification framework presented in (Pasareanu et al., 1999)
are examples in this direction. In the framework of temporal logic,
the work on Alternating time Temporal Logic ATL (and transition
systems) (Alur et al., 1997) was proposed for the specification and ver-
ification of open systems together with automated support via symbolic
model checking procedures, albeit of rather high complexity; the Mocha
toolkit (Alur et al., 1998) provides support for modular verification
of components with requirement specification based on the ATL. It
goes without saying that if tool support is lacking, take-up of these
techniques will be rather low.

The underlying approach to automated assumption generation that
we’ve adopted and implemented in LTSA has similarity to a number of
other problems that have been considered by a number of researchers
over the past two decades. Closest to our our work in the software
engineering and concurrency theory are the “sub-module construction
problem”, “scheduler synthesis” and “interface equation solving” prob-
lems. In the discrete event community, it appears as the “supervisory
control” problem, in control theory there is the “model matching”
problem and in the logic synthesis world there is the “interacting FSM
synthesis”. Of course, the particular frameworks in which these prob-
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lems are considered makes all the difference to their solution(s) and
as such it would be quite inappropriate to claim they are solving the
same problem. However, in very general terms, each can be seen as an
instance of the following problem: given a component, C, and a desired
behaviour, B, find a context for C, X, such that X (C) = B, for some
appropriate notion of equivalence.

Merlin and Bochmann (Merlin and Bochmann, 1983) were probably
the first to address the above as submodule construction in the world
of communication protocol specification and synthesis. In a setting
of labelled transition systems, given a module specification My and
a submodule specification M7, they outlined and exemplified a manual
approach to construct an interacting submodule Ms such that M7 and
M together achieve the desired specification of M. Their construction
has much in common with ours although some significant aspects of
the construction were left unspecified. The later work of (Sidhu and
Aristizabal, 1988; Haghverdi and Ural, 1999) has revisited the Merlin-
Bochmann approach and provided new, detailed, algorithms for the
sub-module construction and implemented an automated tool. One
recognized limitation of the Merlin-Bochmann is that the notion of
correctness, namely just trace equivalence, does not capture a number
of behavioural properties, e.g. potential deadlock.

The work of Shields (Shields, 1989), over a decade later, intro-
duces the “Interface Equation” in the setting of the process algebra,
CCS (Milner, 1989), under observational equivalence. In order to solve
(C|X)\r, = B for the process X, he restricts to cases where B is
deterministic, with some minor restrictions on the sorts of C' and B,
and provides necessary and sufficient conditions for a solution to exist
and then in such situations presents an explicit construction. Parrow
(Parrow, 1989) also addressed the interface equation and presented a
procedure for solving the equations via successive transformation of the
CCS equations to simpler ones, generating a solution along the way; his
approach is based upon a tableau method. Parrow’s method attempts
to find a most general solution, but even if this solution exists, it is
not necessarily appropriate for implementation. Continuing in the pro-
cess algebra framework, Larsen and Xinxin (Larsen and Xinxin, 1990)
consider the more general problem of solving a system of equations
Ci(X) ~ P;, for 0 < i < n, where the C; are arbitrary contexts, P; are
arbitrary processes and X is the process to be found - the equivalence
is taken as bisimulation. They considered the problem in the context
of disjunctive modal transition systems, (Larsen and Thomsen, 1988)
and implemented an automated tool that would solve the equations (in
the finite state case) when a solution exists.
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As stated above, there is a further body of work in supervisory con-
trol synthesis, discrete event systems, and logic synthesis areas, see for
example (Aziz et al., 1995; di Benedetto and Sangiovanni-Vincentelli,
2001; Tronci, 1998; Khatri et al., 1996; Balemi et al., 1993). However,
we should stress that whilst these approaches are in general set in a
FSM/DFA context, the principal goal is quite different in comparison
with ours.

7. Conclusions

We presented an approach to model checking components as open,
rather than closed systems. Our approach reports whether there is
something inherently wrong with the component behavior, or whether
satisfying a requirement is simply a matter of providing the right envi-
ronment. Moreover, it characterizes exactly all helpful environments.

The possibility of generating assumptions provides increased flexi-
bility in model checking, and opens up a number of interesting research
topics. It allows, for example, the discharge of assumptions at run-time
for unpredictable environments, the retrieval of components focused on
only relevant aspects of their behavior, or the decomposition of prop-
erties across components. It remains to further investigate how useful
our approach is in practice. Open research issues include optimizations
and extensions for fairness/liveness properties and other frameworks.
However, our early experiments with real case studies provide strong
evidence in favor of this line of research.
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